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Determinat ion  of the Optic Angle  2V from the Extinct ion Curve of a Single 
Crystal Mounted on a Spindle Stage  
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Formulae for determining the optic angle 2 V from some angular measurements taken on the stereo- 
graphic projection of an extinction curve are given. The extinction curve is obtained with a single 
crystal mounted on a spindle stage. Some properties of the curve are discussed and the practical 
procedure is outlined. A mathematieal appendix is also given. 

I n t r o d u c t i o n  

The investigation of the orientation of the optical 
indicatrix from the extinction curve of a crystal  
mounted on a one-axis stage goniometer (Joel, 1950; 
Joel & Garaycochea, 1957) has led to different 
approaches for determining the optic axial angle 2 V. 
:Following Wilcox (1959) we use here for the 'one-axis 
stage goniometer'  the general name of 'spindle stage' 
(see also :Fisher, 1962). The method proposed here 
is not a method of successive approximations like the 
one by Wilcox (1959, 1960, 1962) and it  requires 
less graphical constructions than the one by Tocher 
(1962), as the angle 2V is calculated from measure- 
ments made on the extinction curve. In the method 
recently proposed by Joel (1963) 2 V is obtained from 
measurements made on an equivibration curve derived 
from the measured extinction positions. 

:From an extinction curve, as was shown by Joel 
& Garaycochea (1957), one can determine the orienta- 
tion of the three axes of the indicatrix. The informa- 
tion contained in an extinction curve, by itself, 
does not make it  possible, however, to distinguish 
between the X and Z axes; but  i t  is sufficient, on 
the other hand, for the identification of the Y axis 
(the optic normal) and for the determination of 2V 
referred to one of the two principal axes in the optic 
plane. I t  follows, then, tha t  one can have all the 
information related to the orientation of the optical 
indicatrix if, to the extinction curve, one adds the 
knowledge of the optic sign of the crystal. 

In  § 1-5 of this paper new equations and properties 
for the extinction curve are given and some formulae 
for calculating 2 V are derived. These results are used 
in § 6 where the practical procedure is outlined; 
examples are given in § 7 and in the Appendix we 
derive the new form of the equations of the extinction 
curve start ing from the ones given by Joel & 
Garaycochea (1957). We have kept  the notat ion of 
this last paper, which is the notat ion of Wilson's 
(1943) book Vector Analysis. 

1. E q u a t i o n s  of t h e  e x t i n c t i o n  curve  

The equation of the extinction curve on a sphere 
of unit  radius can be expressed as follows (see Appen- 
dix): 

(r.  q~.r)(r, r0)= r .  ~ . r0  (1) 

where the variable unit  vectors r are the vibration 
directions; r0 is a unit  vector in the direction of the 
spindle-stage axis; and q~ is a uniplanar dyadic, 
its plane being precisely the optic plane. As is shown 
in the Appendix, i t  is possible to express ~ in two 
alternative ways, referring it  either to the pr imary 
optic axes or to the two principal directions of the 
indicatrix in the optic plane. The first al ternative 
gives: 

= ala2 + a2al (2) 

where al and a2 are unit  vectors parallel to the two 
optic axes; and the second one: 

½q~ = -- sin 2 Vzii + cos 2 Vzkk (3) 

where i and k are unit  vectors parallel to the X and 
Z axes of the ellipsoid. 

Equat ion (1) with q~ given by (2) may  be expanded 
in the form: 

2(r.  al) (r.  ro) = (r.  al) (r0. a2) + (r .  a2) (r0. al) . (4) 

Similarly, equation (1) with q~ given by (3) becomes: 

sin 2 Vz (r.  i) [(r0. i) - (r.  i) (r.  r0)] 
= cos ~" Vz (r.  k) [(r0. k) - (r.  k) (r.  r0)] . (5) 

As to the notation, Table 1 relates the points on 
the stereogram, or on the surface of the reference 
sphere of unit  radius, with the vectors in the formulae. 
Two capital letters placed side by side express the 
angular distance between the corresponding points on 
the stereogram or on the sphere. 
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Table 1. N o t a t i o n  

Point on the Unit Definition in terms of 
stereogram vector ap a,. and r 0 

A 1, Ag. al, a,. Optic axes 
Pe r e Spindle-stage axis 
P r A point on the extinction curve 
(7 g gg=(p.r0; g 2 = r 0 . ~ . r  e 
X i 2 sin Vzi = a 1 -- a s 
Y j sin 2 Vzj = a~. x a 1 
Z k 2 cos Vzk = a 1 + a,  

U u sin PoGu = r e x g 
Tx tx sin PeX tx  = r o -- cos PoXi  

Ty ty sin Pc Y t y  = r 0 -- cos P0 YJ 
Tz tz sin PoZtz = r 0 -- cos P e Z k  

2. S o m e  p r o p e r t i e s  of  t h e  e x t i n c t i o n  c u r v e s  

With  equat ions (1), (4) or (5) one can easily ver i fy  
the  known facts  about  ext inct ion curves a l ready  
obtained by  means  of optical  or geometrical  arguments .  
We shall do this  here for those propert ies t h a t  are 
of in teres t  when one deals wi th  an exper imenta l  
ext inct ion curve. 

(a) An extinct ion curve is centrosym'metric:  if r is 
a solution of equat ion  (1), so is - r .  

(b) The points  Pc, X,  :Y,Z are a lways  on the  
ext inct ion curve:  in fact  the vectors r0, i, j, k are 
solutions of equat ion (1) or (5). 

(c) I f  a point  P is on the  curve, the  plane P P o  
intersects  i t  a t  another  point  P '  t h a t  is 90 ° away  
f rom P .  In  fact ,  if r is a solution of equat ion (1), 
so is r '  defined by :  

sin P P o r '  = r o -  cos P P o r .  (6) 

In  equat ion (6) r and  r '  are the  two vibra t ion  
directions associated with  a given wave front .  The 
s ta tements  (a) and  (c) together  express nothing more 
t h a n  the  fact  t h a t  under  orthoscopic observat ion 
between crossed polarizers a biaxial  crystal  ex- 
t inguishes four  times, every 90 °, during a 360 ° ro ta t ion  
around an  axis parallel  to the  microscope axis. 

(d) I f  P0 is not  on a circular section, no point  of 
the  circular sections is on the  ext inct ion curve, 
except  Y (equation (4)). 

We shall agree t h a t  P0 is in a general  posi t ion 
when i t  is nei ther  on a circular section nor on one 
of the  principal  planes of the indicatr ix.  I n  Fig. 1, 
Pc is in the  centre of the s tereogram but  in a general  
position. In  the  case shown in this figure, P0 is in  
the  acute  angle formed by  the  circular sections and 
the  optic sign is negat ive  as the  X axis is the  acute  
biseetrix of the  optic axial  angle. I t  follows from 
paragraphs  (b) and (c) above tha t  the ext inct ion curve 
(which is not  d rawn  in Fig. 1) mus t  go through the  
points  P0, X,  Tx, Y, Ty, Z and Tz. The points  T~, Ty 
and  Tz are 90 ° away  from X,  Y and  Z across P0. 

In  the  figure, the  loci of the  points  t h a t  are 90 ° away ,  
across Pc, f rom the points of the  circular sections 
are drawn.  Certainly these loci go through the  poles 
of the optic axes A1 and A2. By remarks  (c) and (d) 
the  ext inct ion curve cannot  intersect  the  circular  
sections, except a t  their  common point  Y; nor t h e  
loci just  mentioned,  except a t  their  common poin ts  
/)o and  Ty. The branch of the  extinction curve t h a t  
goes through P0, Tx, Z and  Ty of Fig. 1 is one of 
the  polar  curves (the other  one is its inverse). And  
the  branch through Y, Tz and  X,  which runs  round  
the  sphere, is the  equatorial  curve (Joel & Garaycochea,  
1957). 

21 c/s 

A, 

Fig. 1. Pc, on the centre of the stereogram, is in the acute 
angle of the circular sections CS1 and CS2 for a crystal 
with 2Vx- -70  °. The extinction curve is not drawn, but 
the polar curve goes through the points P0, Ty, Z ,  Tx;  
the equatorial curve through :Y, Tz, X .  The polar and 
equatorial curves are limited by the circular sections and 
by the curves PoTyAe and PoTyA1 which are the loci of 
the points that are 90 ° away - -  through Pe - -  from the 
points of the ch'cular sections. 

I n  order to d raw the  ext inct ion curve in Fig. 1 
i t  is sufficient to m a r k  the  points  on every  grea t  
circle th rough Pc which are half  way  between the  

circular sections. The stere0gram done with P0 in 
the middle of the projection shows the  complete polar  
curve. As Tocher (1962) and Fisher  (1962) pointed out,  
i t  is very  convenient;  bu t  certainly i t  is not  a necessity.  

I t  will be noted t h a t  if Pc is changed to the  obtuse 
angle between the  circular sections or the  crys ta l  
has  the  other  optic sign, then  the  le t ters  X and  Z 
mus t  be in terchanged in the  description of the  polar  
and  equator ial  curves. 

(e) Wi th  P0 in a general  position, each of the  
principal  planes of the  indicatr ix  intersects  the 
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extinct ion curve at  six points: two apices of the 
triangle X:YZ, the point T 90 ° from the other apex, 
and the inverse of these three points. 

(f) On the equatorial curve there exists a point U, 
90 ° away from P0. In fact, a unit  vector in the direction 
of r0× (9.r0) satisfies equation (1). 

Cases where Po is not in a general position will be 
dealt  with in § 5. 

3. F o r m u l a e  for ca lcu la t ing  2V 

When the equation of the extinction curve is wri t ten 
in the form of equation (5) given above, it  becomes 
clear tha t  it is possible to calculate the angle 2V 
using one point of the extinction curve apar t  from the 
points X, Y, Z, P0. If the scalar products are replaced 
by  the cosines of the corresponding angular distances, 
formula (5) becomes: 

cos PZ (cos PoZ - cos PZ cos PPo) 
tg 2 Vz = (7) 

cos P X  (cos P o X -  cos P X  cos PPo) 

which can also be derived directly from the extinction 
curve equations wri t ten in Cartesian coordinates tha t  
are given in the paper by Joel & Garaycochea (1957, 
p. 405, equation (5')). 

Thus, if the five angular distances PX,  PZ, PoX, 
.PoZ and PPo are measured with the stereographic net, 
then 2 V can be calculated as shown by (7). Different 
points P can be selected on the extinction curve and 
in this way an average can be obtained for 2V. 
But  formula (7) becomes indeterminate (0/0) when 
P is chosen to coincide with Po. X,  Y, Z, Tz, Ty or Tz; 
and it  would seem advisable to avoid choosing P 
in the regions around these seven points. The in- 
determination of (7) when P is equal to P0, X, Y or Z 
is obvious from (5). As to the points T~, Ty and T~ 

which represent the vibration directions with the 
same wave normal as X, Y and Z respectively 
subst i tut ing in (6) P,  r and r '  by Tx, tx and i respec- 
tively, and then by scalar multiplication by k, one 
obtains: 

cos P 0 Z = c o s  TzZ  cos TxPo (8) 

and a similar relation is obtained by interchanging 
in (8) Z with X. With P,  r and r '  replaced by Ty, tu 
and j, and by successive scalar multiplication by 
k and i, relation (6) gives: 

cos PoZ = cos TyZ cos TuPo 
cos PoX = cos TuX cos TyPo. (9) 

One has a simpler formula than (7) if P is selected 
to coincide with U, the point on the equatorial curve 
at  90 ° from P0. In  this case (7) takes the form: 

cos UZ cos PoZ 
tgeVz = (10) 

cos UX cos PoX 

and four angular distances have to be measured. 

They can be reduced to three measurements if one 
observes the relations (9). From them, one has: 

cos PoZ 
cos P0------X = cot ZTy (11) 

so tha t  

tge V~ -- I c°s UZ I 
cos UX cot ZTy . (12) 

:Next we shall see tha t  with the introduction of a 
new point G, on the plane X Z  and 90 ° from U, the 
angle 2 V can be calculated from only two measure- 
ments taken on the stereogram. Introducing the unit  
vector g, defined by:  

gg---- ~ . r0;  g ~ =  r0.~2.r0 (13) 

the equation (1) for the extinction curve takes the 
form : 

( r . ~ . r ) ( r . r 0 )  = g r . g .  (14) 

With (2) and (3) one has respectively: 

gg = (ro. az)al + (ro. al)az (15) 

½gg = -- sin e Vz ( ro . i ) i+  cos e V~ (to. k ) k .  (16) 

As ~ is in the optic plane, the point G is on the 
trace of the plane XZ.  Equation (14) is satisfied if 
r is a unit  vector in the direction of r 0 × g .  This 
unit  vector is u. Therefore, G is to be found on the 
plane XZ,  90 ° away from U. 

Multiplying (16) first  by i and then by  k (scalar 
products) and dividing the two relations so obtained, 
one arrives at :  

I c°s P ° Z  I tg 2 Vz = cos PoX" tg ZG (17) 

Combining (17) with (11) it follows tha t  

tg 2 V~ = Itg ZG cot ZTy[. (18) 

After this, we have the formulae (7), (10), (12), (17) 
and (18) which give tg 2 V~. In each of them one can 
interchange Z with X for obtaining tg 9 Vx leading 
to a value of 2V~ tha t  is the supplement of 2V z, 
as it  should be. Therefore, once the three principal 
axes of the indicatrix are located on the extinction 
curve and the Y axis is identified (see next  section), 
one can obtain the value of the optic angle referred 
to one of the principal axes on the optic plane, and 
i t  does not mat ter  if this one is X or Z: the directions 
of the optic axes tha t  are obtained will not depend 
on this choice. Certainly, instead of deriving 2 V from 
tg ~ V one can do it  through cos 2 V with the known 
formula: 

1 - t g  ~ V (19) 
c o s 2 V = l + t g  9 V" 

Furthermore,  combining (18) with (19) one arrives a t :  

sin (ZTy - ZG) 
cos 2Vz = . . (20) 

sm (ZTu + ZG) 
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Formula (20) is such that  if the absolute value of 
the right hand side turns out to be greater than 1, 
then its reciprocal value should be taken. 

4. The grea t  circles th rough  U 

The great circles UPo, UX, U Y and UZ are tangent 
to the extinction curve at the points P0, X, Y and Z 
respectively. As to the great circle UPo, this can be 
shown by substituting in relation (6) r and P by 
u and U; r '  becomes re and the great circle UPo is 
therefore tangent to the polar curve at the point Po. 
One can check this result by differentiating equation 
(14): 

2(dr.qJ.r)(r .ro)+(r.a~.r)(dr.ro)=gdr.g.  (21) 

For r= ro ,  and because r is a unit vector, one has 
d r . r 0 = 0  and (21) becomes d r . g = 0 .  I t  thus follows 
that  the tangent vector at the point Po has the 
direction of r0 × g which is that  of u. 

In general, if we are searching for great circles 
through U that  are tangent to the extinction curve, 
we are looking in fact for the solutions of the equation 
dr. r × u = 0 which is equivalent to : dr.  T. r = 0 for 
r # u, as can be shown by making use of the relations 
(14) and (21). If q~ is substituted by its expression 
as given in (3), it becomes obvious that  the equation 
d r . , . r = 0  is satisfied by r = i , j , k .  As to r=r0, 
this equation becomes d r . g = 0 ,  which is valid as 
was shown above. Passing through U there are, hence, 
four great circles tangent to the extinction curve at 
Po, X, Y and Z respectively. The polar curve (Fig. 2) 

#l 
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_ - - ° -  ! 

""' /Po ' ~ 

/ x~ " •  

tt x "x x x,~ 

U 
Fig .  2. A t h e o r e t i c a l  e x t i n c t i o n  c u r v e  of  a c r y s t a l  w i t h  2 Vx = 60 ° 

a n d  t h e  t a n g e n t  c i rc les  U.P o U, U X  U, U Y U a n d  UZ U. 

is enclosed by the two tangent circles UPoU and UZU 
(or UXU); and the equatorial curve is enclosed by 
the two tangent circles U Y U  and UXU (or UZU). 

These tangent circles through U can be used quite 
simply for a first approximate location of the apices 
X, Y, Z. Furthermore, they provide a convenient 
means for deciding which of the two apices on the 
equatorial curve is Y: between the great circles 
UPoU and U Y U  (the acute dihedral angle) there 
are no points of the extinction curve. 

5. Special positions of Po 
Next some special cases will be discussed. 

(a) P0 is on the trace of a circular section, a ease 
that  has been illustrated by Fisher (1962, pp. 658 
and 663). If one of the points X or Z can be located 
on the extinction curve, one obtains readily not only 
the other two apices of the triangle X YZ but also 
the position of an optic axis and the value of the 
angle V. In fact, let Po be on the trace of the circular 
section perpendicular to al, that  is re .a1=0.  By (15) 
one has that  g =a l ,  so that  the point G becomes A1. 
Equation (4) is satisfied in this case by all the points 
on the circular section where Po is. For points other 
than these, the equation becomes: 

2(r. a2) (r. r0) = (re. a~) 
o r  

2 cos PA9 cos PPo = cos PoA~. (22) 

(a') If Po is in the intersection of one circular 
section with the optic plane, (22) can be written: 

2 cos PA2 cos PPo=s in  2V~. (23) 

The curve given by (23) becomes a circumference 
of radius 45 ° and centre Po when 2Vz=90 °. In fact 
A2 coincides in this case with Po and (23) is equivalent 
to ~/2 cos PPo = 1. 

(a") If Po is on both circular sections, that  is, 
P0 coincides with Y (r0=j) equation (4) becomes: 

(r. al)(r, a~)(r, j ) = 0 .  (24) 

This equation is satisfied by all the points on the 
traces of the circular sections and on the trace of the 
optic plane, altogether three complete great circles. 
The opti0 plane however, is not the equatorial curve. 
La this limiting case, the polar curve consists of one 
spherical triangle Y M N  (and its inverse), where 
M and 2¢ are two of the intersections of the optic 
plane with the circular sections. The rest of the 
extinction curve is covered by the equatorial curve, 
and between the latter and the two polar curves 
there are six common points: Y, M, N and their 
inverse. 

(b) Po is on the trace of one of the planes X Y  or YZ 
(except the points X, Y, Z). Let P0 be on the plane YZ. 
In this ease ~,=k (see (16)), hence G and Ty coincide 
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with Z, and U becomes X. The angle 2V can be 
calculated, by means of four measurements, with 
formula (7) which can be used in the form: 

tg 2 V~ cos PZ (cos PZ cos P P o -  cos PoZ) (25) 
= cos 9 P X  cos PPo 

(c) P0 is on the trace of the optic plane (except the 
points X and Z). In this case the following pairs of 
points coincide: U and Y, Ty and Po, Tz and X, 
Tz and Z. Hence, it is not possible to locate G by 
means of the plane whose pole is U. The angle 2V 
can be calculated with formula (7) taking four measure- 
ments, or with three measurements and the formula 
that  follows: 

cos PZ (sin 9' PZ - cos PZ cos P X  tg PoZ) 
tg ~" V~ = cos P X  (sin 9' P X  tg P o Z -  cos PZ cos PX)  " 

(26) 

(d) P0 coincides with Z (or X). In this case the points 
P0, Z, Tx, Ty and G (or P0, X, T~, T~ and G) coincide. 
The equatorial curve is a great circle whose pole is 
P0 and the polar curve reduces itself to the point P0. 
There is no difference between the curves in this case 
and in the case of a uniaxial crystal with the spindle- 
stage axis coinciding with its optic axis (see Appendix). 

6. Pract ica l  procedure  for determining 2V 

The results of the previous sections can be summarized 
in the following procedure for determining 2V. 

The extinction readings 01 (and 02 = 01 Jr 90 °) of the 
microscope stage are plotted on the stereogram for 
the corresponding settings of the spindle stage. P0, the 
projection of the spindle-stage axis, is chosen in the 
centre of the stereogram. The polar and equatorial 
curves are then drawn through the experimental points 
taking care that  any point of the former must be 90 ° 
away through P0 from its corresponding one on the 
latter. The position of the point U on the equatorial 
curve, 90 ° from P0, is marked. With P0 in the centre 
of the stereogram, U is on the primitive circle at the 
point where it is intersected by the equatorial curve. 
One must keep in mind that  the great circle that  goes 
through P0 and U should be tangent to the polar 
curve at P0. 

Let us suppose that  P0 is in a general position and 
that  a Wulff net is used. The points at which the 
great circles through U are tangent to the equatorial 
and polar curves give us an approximate location of 
the apices of the right-sided triangle X YZ and this 
permits a quicker determination of them. If the 
approximate position of one of these three apices is 
used, for instance Y, which can be easily identified 
as explained in the last sentence of § 4, one can proceed 
as follows: the great circle through Y and P0 deter- 
mines a point Ty on the polar curve which is 90 ° 
away from ]7; the great circle through Tu, of which 
Y is the pole, intersects the extinction curve at two 

more points, one on the polar curve and the other 
one on the equatorial curve. They should be X and Z 
and should be 90 ° apart. If they are not 90 ° apart, 
then the assumed position for Y is incorrect and one 
tries another point in the limited region already 
determined for the point Y. The apices of the triangle 
are thus obtained,* and as a check of the quality of 
the stereogram one can use the property given by 
remark (e) in § 2. Then the position of the point G 
is determined as the intersection of the plane X Z  
and the great circle at 90 ° from U. As a check one 
uses the fact that  the point G is also the pole of the 
great circle that  passes through Y and U which in 
turn should be tangent to the curve at Y. As P0 is 
in the centre of the stereogram it is advisable to 
calculate the optic angle referred to the axis on the 
polar curve. For a moment let us label Z the apex 
of the triangle on the polar curve. The distances 
ZG and ZTy are measured and Vz is calculated with 
formula (20) or (18). The identification of the axes 
X and Z can be easily done and then one knows 
if the apex on the polar curve is really Z or X. But 
if the sign of the crystal is previously known, the 
points X and Z are then already identified through 
the value of the angle just calculated. Alternatively, 
any of the formulae (17), (12), (10) or (7) might be 
used if the required angular distances are read off 
the projection; the choice of the formula may depend 
on factors such as the accuracy with which some 
points have been determined, the particular numerical 
value of the distances to be measured, etc. 

As a matter of fact, the errors in the determination 
of 2V reduce mainly to those of the experimental 
extinction positions and the attainable precision of 
these readings depends on the setting of the crystal 
on the spindle stage. Fairly good extinction readings 
with a favourable setting are sufficient for the 
approximate location of the points X, Y, Z, U. Then, 
one can carefully refine small regions of the extinction 
curve around any of the relevant points. 

When recording the experimental data, it is advis- 
able to look for the setting of the spindle stage for 
extinction directions 0 of 0 ° or 90 ° (measured from P0) 
and in the neighbourhood of these values, as this 
helps to locate more accurately the point U, and 
consequently the point G. To attain accuracy in the 
determination of the extinction positions, the use of 
an immersion liquid of adequate refractive index and 
of monochromatic light are common requirements. 
Accesories like a Bertrand ocular or others (Johannsen, 
1918, pp. 392-398) are useful in certain cases. Valuable 
suggestions on this topic will be found in the papers 
by Wilcox (1959), Tocher (1962) and Fisher (1962). 

For the evaluation of the errors introduced by the 
plotting and reading on the stereogram, theoretical 

* This procedure is quicker than the one originally proposed 
by Joel & Garaycochea (1957) and, apart from the use of 
the circles through U, is similar to the one given by Tocher 
(1962). 
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ext inct ion curves were drawn and then  some of the 
[ormulae given in this  paper  were used. Wi th  a 20 cm 
Wulff  stereographic net, wi thout  too much  effort, 
the value of 2V was recuperated with an  absolute 
error of less t h a n  1 ° . Moreover, the absolute error 
can be es t imated by  different iat ing formula (18), 
for instance. Let  us call 8, ~ and ~' the absolute errors 
in 2 Vz, ZG and  ZTy respectively.  One can obtain:  

~} = sin 2 Vz sin 2ZG + s i n ~ T y  . (27) 

white  l ight.  Special a t ten t ion  was given to the  extinc- 
t ion measurements  leading to the point  U. The set t ing 
of the crystal  was favourable  and  the stereogram was 
drawn with P0 in the middle  (Fig. 3). The optic angle 
was calculated with formulae (10), (12), (17), (18) 
and (20) measur ing for each of them the required 
distances. All of them gave values in the range 
77 ° 25' to 77 ° 45'. Taking ~=~'=30',  formula  (27) 
gave ~ = _+ 1 ° for the error in 2 V. 

7. E x a m p l e s  

The method  here described was t r ied out on several 
b iax ia l  crystals.  Only two examples  are given and  
each of them has a special interest ,  though none of 
them represents a precise de terminat ion  of 2V. 

(a) If  one wants  to ident i fy  quickly a single crystal  
before working in X-ray  diffraction, i t  is not  necessary 
to obta in  great  accuracy in  the value of 2 V. A single 
crystal  of brochant i te  - -  monoclinic with 2 V~ = 77 ° _+ 2 ° 
as given by  Palache,  Be rman  & Frondel  (1951, p. 542) 

has been selected for X-ray  diffraction, being 
mounted  on a glass fiber. Before set t ing the glass 
f iber  on the X-ray  goniometer  head, i t  was set on 
the  spindle stage. The ext inct ion positions were 
obta ined wi th  a l iquid of refractive index 1-77 
(average refract ive indices of the crystal) and  wi th  

- ,  P0 

. . . . . . . . . .  ° . . . . .  . ' ° ' ~  

! 
I 
I 

Fig. 3. An extinction curve of brochantite.  The stereogram 
shows: the equatorial curve with the X and Y axes and 
the point U; the polar curve with the Z axis and the 
points P0 and Ty; the great circle U Y tangent  to the 
equatorial curve at  Y and its pole G. The point G is the 
intersection of the great circle X Z  and the one whose pole 
i s U .  

\ J 
/ 

I 
! 

! 

Fig. 4. The extinction curve of morinite, after the da ta  of 
Fisher (1962). Tile stereogram shows: the equatorial curve 
with the Z and Y axes; the polar curve with P0 and the 
X axis; the points U and G. 

(b) The ext inct ion curve of morini te  is shown in 
Fig. 4. I t  was drawn from da ta  given by  Fisher  
(1962, Tables 1 and 2 and  considerations in the text).  
The lack of ext inct ion readings ill the neighbourhood 
of U and P0 is caused undoubted ly  by the fact t ha t  
Po is near  the trace of a circular section. Nevertheless,  
from the great circles tangent  to the polar curve a t  
P0 and  X and to the equatorial  curve at  Y and  Z 
one could determine the l imits  for the possible positions 
of the point  U, which gave 1 3 ° <  XG < 15 ° . Wi th  
POX=69  ° and P o Z = 4 5  °, given by Fisher,  and wi th  
formula  (17), the range 370 46' < 2 V~ < 40 ° 28' was 
obtained.  These values are in fair  agreement  wi th  
the values 39 ° 42' and 40 ° 07' obtained by Fisher  & 
Runne r  (1958) and Fisher  (1962) from measurements  
of the principal  .refractive indices. 

The equat ion 
APPENDIX 

r . ¢ . r = l  

represents an  ellipsoid if 

(1) 
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(I)= Aii  + Bjj + C k k  (2) 

with A, B, C positive numbers and 

r = x i + y j + z k  . (3) 

If A = c~ -~, B =  fl-2, C =  ~_9 where c~, #, 7 are the 
principal refractive indices of a crystal, equation (1) 
represents its optical indicatrix. As usual, we suppose 
c~ <f l  < y  so tha t  A > B > C > 0 .  

Let  us define two unit  vectors al and a2 by  means 
of the following relations: 

V ( A - C ) a l =  V ( A - B ) i +  ~ / (B-C)k  
V ( A - C ) a 2 = - l / ( A - B ) i + V ( B - C ) k .  (4) 

The dyadic (D of formula (2) can be writ ten now 
in the form: 

(I) = B I - ½(A - C)T (5) 

where the dyadic I is the idemfactor and q~ is the 
dyadic defined by 

= a l a 2  + a 2 a l .  (6) 

If (5) and (6) are introduced in (1), the equation 
of the ellipsoid can be writ ten: 

B r ~ -  (A - C) (r. al) (r.  a2) = 1 . (7) 

Now, the equation of the plane normal to a~ through 
the origin is 

r .  al = 0 (8) 

and if r satisfies equations (7) and (8) then i t  also 
satisfies 

B r  2 = 1 (9) 

which is a circumference (of radius fl) on both the 
ellipsoid and the plane normal to al. The vectors 
al and a9 are therefore normal to the two circular 
sections of the ellipsoid; tha t  is, they are the optic 
axes of the indicatrix. 

Let  us call 2 Vz the angle formed by the two optic 
axes (the one which is bisected by the Z axis). From 
relations (4) it  follows easily tha t  

a~. a2=cos 2 V ~ = ( 2 B - ( A  + C ) ) / ( A - C )  (10) 

(al. k)2=cos 2 V z = ( B - C ) / ( A - C ) ,  (11) 

and from (11) : 
tg 2 V z = ( A - B ) / ( B - C ) .  (12) 

Making use of (4) and (11), (6) becomes 

½q) = - sin 2 VAi + cos 2 V~kk. (13) 

The equations of an extinction curve expressed by 
means of the dyadic (2) are, as given by Joel & 
Garaycochea (1957, p. 405, equation (5)) the following: 

(r. (I). r) (r. r0) = r .  (I). r0 
r ~. = 1 .  (14) 

By  introducing in (14) the expression (5) for (I) the 
following equations for the extinction curve are 
obtained: 

(r.  q). r) (r.  r0)-- r .  q). r0 
r 2 = 1 (15) 

which are identical in form with equation (14) but  
with the dyadic q~ given by (6) or (13). 

The equations of the extinction curve for a uniaxial 
crystal follow as a particular case of (15). If one has 
a i = a 2 = k ,  or 2Vz--0, from (6) or (13) one has tha t  
½q~=kk and (15) becomes 

(r.  k)2(r, r0) = (r.  k)(r0, k); r 2 = l .  (16) 

Hence, the extinction curvo in this case consists of 
the great  circle r . k = 0  and the curve ( r . k ) ( r . r 0 ) =  
r0. k which is satisfied by r0 and k. 

We are indebted to Dr N. Joel for helpful comments 
and discussions throughout  this work. And we are 
grateful to Dr F. E. Tocher (University of Aberdeen) 
for his critical reading of the manuscript  and some 
suggestions, especially for pointing out to us tha t  there 
are four, not two, great  circles through U and tangent  
to the extinction curve. 

R e s u m e n  

Con las fSrmulas aqul dadas, el ~ngulo dptico 2V 
puede calcularse a part ir  de ciertas medidas angulares 
realizadas en la proyecciSn estereogrMica de una curva 
de extinciSn. La curva se obtiene con el monocristal 
montado en un simple goniSmetro de platina. Se 
discuten algunas propiedades de la curva de extinciSn 
y se describe el procedimiento pr£ctico. Se da tambi6n 
un ap~ndice matem&tico. 
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